Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.009
1.
Med Oncol ; 41(5): 123, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652404

Colon cancer is on the rise in both men and women. In addition to traditional treatment methods, herbal treatments from complementary and alternative medicine are actively followed. Naturally derived from plants, thymoquinone (TQ) has drawn a lot of attention in the field of cancer treatment. MK-801, an N-methyl-D-aspartate agonist, is used to improve memory and plasticity, but it has also lately been explored as a potential cancer treatment. This study aimed to determine the roles of N-Methyl-D-Aspartate agonists and Thymoquinone on mitochondria and apoptosis. HT-29 cells were treated with different TQ and MK-801 concentrations. We analyzed cell viability, apoptosis, and alteration of mitochondria. Cell viability significantly decreased depending on doses of TQ and MK-801. Apoptosis and mitochondrial dysfunctions induced by low and high doses of TQ and MK-801. Our study emphasizes the need for further safety evaluation of MK-801 due to the potential toxicity risk of TQ and MK-801. Optimal and toxic doses of TQ and MK-801 were determined for the treatment of colon cancer. It should be considered as a possibility that colon cancer can be treated with TQ and MK-801.


Apoptosis , Benzoquinones , Cell Survival , Colorectal Neoplasms , Dizocilpine Maleate , Mitochondria , Receptors, N-Methyl-D-Aspartate , Humans , Benzoquinones/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , HT29 Cells , Dizocilpine Maleate/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects
2.
Pharmacol Biochem Behav ; 238: 173740, 2024 May.
Article En | MEDLINE | ID: mdl-38447709

Sign-tracking is a Pavlovian conditioned approach behavior thought to be important in understanding cue-driven relapse to drug use, and strategies for reducing sign-tracking may have some benefit in preventing relapse. A previous study successfully employed the NMDA receptor antagonist MK-801 in preventing the development of sign-tracking (but not goal-tracking) in a conditioned approach task. In this study, we focused on whether MK-801 would have similar effects on previously established sign-tracking behavior. MK-801 was administered after training in a standard sign-/goal-tracking task using a retractable lever as a conditioned stimulus and a sucrose pellet as unconditioned stimulus. It was found that MK-801 increased measures of both sign- and goal-tracking in subjects who had previously learned the task. The NMDA receptor appears to play a complex role in governing behavior related to sign-tracking.


Dizocilpine Maleate , Goals , Humans , Rats , Animals , Male , Rats, Sprague-Dawley , Dizocilpine Maleate/pharmacology , Receptors, N-Methyl-D-Aspartate , Motivation , Recurrence , Cues , Reward
3.
Pharmacol Biochem Behav ; 238: 173749, 2024 May.
Article En | MEDLINE | ID: mdl-38462045

BACKGROUND: Muscarinic or 5-HT1A receptors are crucial in learning and memory processes, and their expression is evident in the brain areas involved in cognition. The administration of the activators of these receptors prevents the development of cognitive dysfunctions in animal models of schizophrenia induced by MK-801 (N-methyl-d-aspartate receptor antagonist) administration. GABAergic dysfunction is considered as one of the most important causes of MK-801-induced spatial learning deficits. METHODS: Novel object recognition (NOR) and Morris water maze (MWM) tests were used to study the anti-amnestic effect of the biased 5-HT1A receptor agonist (F15599) alone or in combinations with VU0357017 (M1 receptor allosteric agonist), VU0152100 (M4 receptor positive allosteric modulator), and VU0238429 (M5 receptor positive allosteric modulator) on MK-801-induced dysfunctions. The compounds were administered for 5 consecutive days. Animals tested with the MWM underwent 5-day training. Western blotting was used to study the expressions of 5-HT1A receptors and the level of GAD65 in the frontal cortices (FCs) and hippocampi of the animals. RESULTS: F15599 prevented the amnestic effect induced by MK-801 in the MWM at a dose of 0.1 mg/kg. The co-administration of the compound with muscarinic receptors activators had no synergistic effect. The additive effect of the combinations was evident in the prevention of declarative memory dysfunctions investigated in NOR. The administration of MK-801 impaired 5-HT1A expression in the hippocampi and decreased GAD65 levels in both the FCs and hippocampi. The administration of muscarinic ligands prevented these MK-801-induced deficits only in the hippocampi of MWM-trained animals. No effects of the compounds were observed in untrained mice. CONCLUSION: Our results indicate that F15599 prevents schizophrenia-related spatial learning deficits in the MWM; however, the activity of the compound is not intensified with muscarinic receptors activators. In contrast, the combined administration of the ligands is effective in the NOR model of declarative memory. The muscarinic receptors activators reversed MK-801-induced 5-HT1A and GAD65 dysfunctions in the hippocampi of MWM-trained mice, but not in untrained mice.


Dizocilpine Maleate , Serotonin , Mice , Animals , Dizocilpine Maleate/pharmacology , Receptors, Muscarinic , Brain , Cholinergic Agents/pharmacology , Receptor, Serotonin, 5-HT1A
4.
Behav Brain Res ; 465: 114948, 2024 May 08.
Article En | MEDLINE | ID: mdl-38479476

The prairie vole (Microtus ochrogaster) is a rodent species that has been used extensively to study biological aspects of human social bonding. Nevertheless, this species has not been studied in the context of modeling social deficits characteristic of schizophrenia. Building on studies in rodents that show that sub-chronic administration of an NMDA receptor antagonist induces persistent behavioral and neurological characteristics of schizophrenia, we administered MK-801 (0.2 mg/kg, daily, for 7 days) or physiological saline to young adult (45 days old) virgin male voles. At 69 days of age, we paired these males with virgin females. 24 h later, we assessed the males' social investigation of each female across the first 5 min of a three-hour preference test, and side-by-side contact with each female during the last hour of the test. Unlike saline-treated males, MK-801-treated males did not preferentially investigate the unfamiliar female, indicating a deficit in social memory. Although males of both groups preferentially spent time with their female partner, regression analysis revealed that deficits in social memory predicted lower partner preference in MK-801-treated males. We interpret these results in the context of recent studies of the natural history of the prairie vole as well as in the context of cognitive deficits in schizophrenia and propose that the social component of episodic memory might influence an individual's capacity to form and maintain long-term social bonds.


Schizophrenia , Sexual Behavior, Animal , Animals , Humans , Male , Female , Sexual Behavior, Animal/physiology , Dizocilpine Maleate/pharmacology , Social Behavior , Schizophrenia/chemically induced , Grassland , Arvicolinae/physiology , Models, Animal
5.
Open Vet J ; 14(2): 683-691, 2024 Feb.
Article En | MEDLINE | ID: mdl-38549576

Background: Canine atopic dermatitis (CAD) is caused by skin barrier dysfunction due to allergen exposure. Excessive glutamate release in the skin is associated with delayed skin barrier function recovery and epidermal thickening and lichenification. Treatment with Yokukansan (YKS), a traditional Japanese medicine, reduces dermatitis severity and scratching behavior in NC/Nga mice by decreasing epidermal glutamate levels. However, the association between canine keratinocytes and glutamate and the mechanism by which YKS inhibits glutamate release from keratinocytes remains unknown. Aim: We aimed to investigate glutamate release from canine progenitor epidermal keratinocytes (CPEKs) and the inhibitory effect of YKS on this release. We also explored the underlying mechanism of YKS to enable its application in CAD treatment. Methods: Glutamate produced from CPEKs in the medium at 24 hours was measured. The measurement conditions varied in terms of cell density and YKS concentration. CPEKs were treated with a glutamate receptor antagonist (MK-801), a glutamate transporter antagonist (THA), and a glutamate dehydrogenase inhibitor (epigallocatechin gallate; EGCG), and the inhibitory effect of YKS, YKS + THA, MK-801, and EGCG on this release was determined. MK-801 and glutamate dehydrogenase inhibitor were tested alone, and THA was tested in combination with YKS. Finally, glutamine incorporated into CPEKs at 24 hours was measured using radioisotope labeling. Results: CPEKs released glutamate in a cell density-dependent manner, inhibited by YKS in a concentration-dependent manner. Moreover, YKS reduced the intracellular uptake of radioisotope-labeled glutamine in a concentration-dependent manner. No involvement of glutamate receptor antagonism or activation of glutamate transporters was found, as suggested by previous studies. In addition, EGCG could inhibit glutamate release from CPEKs. Conclusion: Our findings indicated that glutamate release from CPEKs could be effectively inhibited by YKS, suggesting the utility of YKS in maintaining skin barrier function during CAD. In addition, CPEKs are appropriate for analyzing the mechanism of YKS. However, we found that the mechanism of action of YKS differs from that reported in previous studies, suggesting that it may have had a similar effect to EGCG in this study. Further research is warranted to understand the exact mechanism and clinical efficacy in treating CAD.


Drugs, Chinese Herbal , Glutamic Acid , Glutamine , Mice , Animals , Dogs , Glutamic Acid/pharmacology , Glutamine/pharmacology , Dizocilpine Maleate/pharmacology , Glutamate Dehydrogenase/pharmacology , Keratinocytes , Radioisotopes/pharmacology
6.
Molecules ; 29(3)2024 Jan 29.
Article En | MEDLINE | ID: mdl-38338372

The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test. Our results indicate that both compounds provoked eNOS monomer formation, and CDPPB at a dose of 5 mg/kg exaggerated the effect of MK-801 or scopolamine. The coadministration of spermineNONOate or DETANONOate enhanced the antiamnesic effect of CDPPB or LY487379. The best activity was observed for ineffective or moderate dose combinations. The results indicate that treatment with mGluR2 and mGluR5 PAMs may be burdened with the risk of promoting eNOS uncoupling through the induction of dimer dissociation. Administration of the lowest possible doses of the compounds with NO• donors, which themselves have procognitive efficacy, may be proposed for the treatment of schizophrenia or AD.


Benzamides , Cognitive Dysfunction , Dizocilpine Maleate , Nitroso Compounds , Pyrazoles , Pyridines , Sulfonamides , Mice , Animals , Dizocilpine Maleate/pharmacology , Nitric Oxide/pharmacology , Scopolamine/pharmacology , Nitric Oxide Synthase Type III , Cognitive Dysfunction/drug therapy , Brain , Allosteric Regulation
7.
J Neurochem ; 168(3): 238-250, 2024 03.
Article En | MEDLINE | ID: mdl-38332572

Deciphering the molecular pathways associated with N-methyl-D-aspartate receptor (NMDAr) hypofunction and its interaction with antipsychotics is necessary to advance our understanding of the basis of schizophrenia, as well as our capacity to treat this disease. In this regard, the development of human brain-derived models that are amenable to studying the neurobiology of schizophrenia may contribute to filling the gaps left by the widely employed animal models. Here, we assessed the proteomic changes induced by the NMDA glutamate receptor antagonist MK-801 on human brain slice cultures obtained from adult donors submitted to respective neurosurgery. Initially, we demonstrated that MK-801 diminishes NMDA glutamate receptor signaling in human brain slices in culture. Next, using mass-spectrometry-based proteomics and systems biology in silico analyses, we found that MK-801 led to alterations in proteins related to several pathways previously associated with schizophrenia pathophysiology, including ephrin, opioid, melatonin, sirtuin signaling, interleukin 8, endocannabinoid, and synaptic vesicle cycle. We also evaluated the impact of both typical and atypical antipsychotics on MK-801-induced proteome changes. Interestingly, the atypical antipsychotic clozapine showed a more significant capacity to counteract the protein alterations induced by NMDAr hypofunction than haloperidol. Finally, using our dataset, we identified potential modulators of the MK-801-induced proteome changes, which may be considered promising targets to treat NMDAr hypofunction in schizophrenia. This dataset is publicly available and may be helpful in further studies aimed at evaluating the effects of MK-801 and antipsychotics in the human brain.


Antipsychotic Agents , Clozapine , Animals , Humans , Clozapine/pharmacology , Haloperidol/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Dizocilpine Maleate/pharmacology , Proteome/metabolism , N-Methylaspartate , Glutamic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Proteomics , Antipsychotic Agents/pharmacology , Brain/metabolism
8.
Int J Mol Sci ; 25(2)2024 Jan 14.
Article En | MEDLINE | ID: mdl-38256109

The available antipsychotics for schizophrenia (SZ) only reduce positive symptoms and do not significantly modify SZ neurobiology. This has raised the question of the robustness and translational value of methods employed during drug development. Electroencephalography (EEG)-based measures like evoked and spontaneous gamma oscillations are considered robust translational biomarkers as they can be recorded in both patients and animal models to probe a key mechanism underlying all SZ symptoms: the excitation/inhibition imbalance mediated by N-methyl-D-aspartate receptor (NMDAr) hypofunction. Understanding the effects of commercialized atypical antipsychotics on such measures could therefore contribute to developing better therapies for SZ. Yet, the effects of such drugs on these EEG readouts are unknown. Here, we studied the effect of the atypical antipsychotic aripiprazole on the gamma-band auditory steady-state response (ASSR), spontaneous gamma oscillations and behavioral features in a SZ rat model induced by the NMDAr antagonist MK-801. Interestingly, we found that aripiprazole could not normalize MK-801-induced abnormalities in ASSR, spontaneous gamma oscillations or social interaction while it still improved MK-801-induced hyperactivity. Suggesting that aripiprazole is unable to normalize electrophysiological features underlying SZ symptoms, our results might explain aripiprazole's inefficacy towards the social interaction deficit in our model but also its limited efficacy against social symptoms in patients.


Antipsychotic Agents , Schizophrenia , Humans , Animals , Rats , Aripiprazole/pharmacology , Schizophrenia/drug therapy , Dizocilpine Maleate/pharmacology , Antipsychotic Agents/pharmacology , Electroencephalography , Receptors, N-Methyl-D-Aspartate
9.
Neurochem Res ; 49(2): 363-378, 2024 Feb.
Article En | MEDLINE | ID: mdl-37814133

Cannabidiol (CBD) is a promising neurological agent with potential beneficial effects on memory and cognitive function. The combination of CBD and topiramate in the treatment of some neurological diseases has been of great interest. Since Topiramate-induced memory loss is a major drawback of its clinical application and the overall effect of the combination of CBD and topiramate on memory is still unclear, here we investigated the effect of CBD on topiramate-induced memory loss and the underlying molecular mechanisms. A one trial step-through inhibitory test was used to evaluate memory consolidation in rats. Moreover, the role of N-methyl-D-aspartate receptors (NMDARs) in the combination of CBD and topiramate in memory consolidation was evaluated through the intra-CA1 administration of MK-801 and NMDA. Western blot analysis was used to evaluate variations in brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic AMP response element-binding protein (pCREB)/CREB ratio in the prefrontal cortex (PFC) and hippocampus (HPC). While the intraperitoneal (i.p.) administration of topiramate (50, 75, and 100 mg/kg) significantly reduced inhibitory time latency, the i.p. administration of CBD (20 and 40 mg/kg) could effectively reverse these effects. Similarly, the sub-effective doses of NMDA plus CBD (10 mg/kg) could improve the topiramate-induced memory loss along with an enhancement in BDNF and pCREB expression in the PFC and HPC. Contrarily, the administration of sub-effective doses of the NMDAR antagonist (MK-801) diminished the protective effects of CBD (20 mg/kg) on topiramate-induced memory loss associated with decreased BDNF and pCREB levels in the PFC and HPC. These findings suggest that CBD can improve topiramate-induced memory impairment, partially by the NMDARs of the PFC and HPC, possibly regulated by the CREB/BDNF signaling pathway.


Brain-Derived Neurotrophic Factor , Cannabidiol , Rats , Animals , Topiramate/therapeutic use , Topiramate/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Dizocilpine Maleate/metabolism , N-Methylaspartate/metabolism , Hippocampus/metabolism , Signal Transduction , Prefrontal Cortex/metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Amnesia/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism
10.
Schizophr Bull ; 50(1): 120-131, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37301986

BACKGROUND AND HYPOTHESIS: Treatment of schizophrenia remains a major challenge. Recent studies have focused on glutamatergic signaling hypoactivity through N-methyl-D-aspartate (NMDA) receptors. Low-intensity pulsed ultrasound (LIPUS) improves behavioral deficits and ameliorates neuropathology in dizocilpine (MK-801)-treated rats. The aim of this study was to investigate the efficacy of LIPUS against psychiatric symptoms and anxiety-like behaviors. STUDY DESIGN: Rats assigned to 4 groups were pretreated with or without LIPUS for 5 days. The open field and prepulse inhibition tests were performed after saline or MK-801 (0.3 mg/kg) administration. Then, the neuroprotective effects of LIPUS on the MK-801-treated rats were evaluated using western blotting and immunohistochemical staining. STUDY RESULTS: LIPUS stimulation of the prefrontal cortex (PFC) prevented deficits in locomotor activity and sensorimotor gating and improved anxiety-like behavior. MK-801 downregulated the expression of NR1, the NMDA receptor, in rat medial PFC (mPFC). NR1 expression was significantly higher in animals receiving LIPUS pretreatment compared to those receiving only MK-801. In contrast, a significant increase in c-Fos-positive cells in the mPFC and ventral tegmental area was observed in the MK-801-treated rats compared to those receiving only saline; this change was suppressed by pretreatment with LIPUS. CONCLUSIONS: This study provides new evidence for the role of LIPUS stimulation in regulating the NMDA receptor and modulating c-Fos activity, which makes it a potentially valuable antipsychotic treatment for schizophrenia.


Schizophrenia , Animals , Rats , Schizophrenia/chemically induced , Dizocilpine Maleate/pharmacology , Receptors, N-Methyl-D-Aspartate , Anxiety , Prefrontal Cortex
11.
Neuroscience ; 535: 88-98, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37925051

The benefits of aerobic exercises for memory are known, but studies of strength training on memory consolidation are still scarce. Exercise stimulates the release of metabolites and myokines that reaching the brain stimulate the activation of NMDA-receptors and associated pathways related to cognition and synaptic plasticity. The aim of the present study was to investigate whether the acute strength exercise could promote the consolidation of a weak memory. We also investigated whether the effects of strength exercise on memory consolidation and on the BDNF and synapsin I levels depends on the activation of NMDA-receptors. Male Wistar rats were submitted to strength exercise session after a weak training in contextual fear conditioning paradigm to investigate the induction of memory consolidation. To investigate the participation of NMDA-receptors animals were submitted to contextual fear training and strength exercise and infused with MK801 or saline immediately after exercise. To investigate the participation of NMDA-receptors in BDNF and synapsin I levels the animals were submitted to acute strength exercise and infused with MK801 or saline immediately after exercise (in absence of behavior experiment). Results showed that exercise induced the consolidation of a weak memory and this effect was dependent on the activation of NMDA-receptors. The hippocampal overexpression of BDNF and Synapsin I through exercise where NMDA-receptors dependent. Our findings showed that strength exercise strengthened fear memory consolidation and modulates the overexpression of BDNF and synapsin I through the activation of NMDA-receptors dependent signaling pathways.


Memory Consolidation , N-Methylaspartate , Rats , Animals , Male , N-Methylaspartate/metabolism , Memory Consolidation/physiology , Rats, Wistar , Dizocilpine Maleate/pharmacology , Synapsins/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Fear/physiology , Receptors, N-Methyl-D-Aspartate/metabolism
12.
Mol Biol Rep ; 50(12): 10287-10299, 2023 Dec.
Article En | MEDLINE | ID: mdl-37971568

BACKGROUND: Neurological disorders result in not only a decline in the quality of life of patients but also a global economic burden. Therefore, protective medicine becomes more important for society. MK-801 is a chemical agent used to understand the etiology of behavioral disorders and brain degeneration in animal models. This study aims to determine whether N-acetylcysteine (NAC) is useful to treat brain degeneration caused by MK-801, an N-methyl-D-aspartate glutamate receptor antagonist. METHODS AND RESULTS: Four groups were formed by dividing 24 male BALB/c mice into groups of six. The control group was given a saline solution (10 ml/kg-i.p.). MK-801 (1 mg/kg-i.p.) was given alone to one group, and it was given with NAC (100 mg/kg-i.p.) to another group, while the last group was given only NAC (100 mg/kg-i.p.). The administration of drugs lasted for fourteen days. After the behavioral tests (open field and elevated plus-maze), all animals were euthanised, and brain tissues were collected for real-time PCR, TAS-TOS analysis, hematoxylin-eosin, Kluver-Barrera, and TUNEL staining. In the MK-801 group, besides nuclear shrinkage in neurons, glial cell infiltration, vacuolization in cortical neurons, white matter damage, and apoptosis were observed. CONCLUSION: In the mice given NAC as a protective agent, it was observed that behavioral problems improved, antioxidant levels increased, and nuclear shrinkage, glial cell infiltration, vacuolization in neurons, and white matter degeneration were prevented. Moreover, MBP expression increased, and the number of TUNEL-positive cells significantly decreased. As a result, it was observed that NAC may have a protective effect against brain degeneration.


Acetylcysteine , Dizocilpine Maleate , Humans , Mice , Animals , Male , Acetylcysteine/pharmacology , Dizocilpine Maleate/pharmacology , Quality of Life , Antioxidants/pharmacology , Excitatory Amino Acid Antagonists , Protective Agents
13.
Nat Neurosci ; 26(10): 1751-1761, 2023 10.
Article En | MEDLINE | ID: mdl-37709995

Ketamine was thought to induce rapid antidepressant responses by inhibiting GluN2B-containing N-methyl-D-aspartic acid (NMDA) receptors (NMDARs), which presents a promising opportunity to develop better antidepressants. However, adverse side effects limit the broader application of ketamine and GluN2B inhibitors are yet to be approved for clinical use. It is unclear whether ketamine acts solely through GluN2B-dependent mechanisms. The present study reports that the loss of another major NMDAR subunit, GluN2A, in adult mouse brains elicits robust antidepressant-like responses with limited impact on the behaviors that mimic the psychomimetic effects of ketamine. The antidepressant-like behavioral effects of broad NMDAR channel blockers, such as ketamine and MK-801 (dizocilpine), were mediated by the suppression of GluN2A, but not by the inhibition of GluN2B. Moreover, treatment with ketamine or MK-801 rapidly increased the intrinsic excitability of hippocampal principal neurons through GluN2A, but not GluN2B. Together, these findings indicate that GluN2A mediates ketamine-triggered rapid antidepressant-like responses.


Antidepressive Agents , Ketamine , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Antidepressive Agents/pharmacology , Dizocilpine Maleate/pharmacology , Hippocampus/metabolism , Ketamine/pharmacology , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
14.
Biochemistry (Mosc) ; 88(9): 1404-1415, 2023 Sep.
Article En | MEDLINE | ID: mdl-37770406

Hepatic encephalopathy (HE), a neuropsychiatric disorder developing in patients with severe hepatic dysfunction, has been known for more than a century. However, pathogenetic mechanisms of cerebral dysfunction associated with liver disease are still poorly understood. There is a consensus that the primary cause of HE is accumulation of ammonia in the brain as a result of impaired liver detoxification capacity or the portosystemic shunt. Current evidence suggests that ammonia toxicity is mediated by hyperactivation of glutamate receptors, mainly N-methyl-D-aspartate receptors (NMDARs), and affects brain aerobic metabolism, which provides energy for multiple specific functions and neuronal viability. Recent reports on the presence of functional NMDARs in erythrocytes and the data on the deviations of blood parameters from their normal ranges indicate impaired hemodynamics and reduced oxygen-carrying capacity of erythrocytes in most patients with HE, thus suggesting a relationship between erythrocyte damage and cerebral dysfunction. In order to understand how hyperammonemia (HA)-induced disturbances in the energy metabolism in the brain (which needs a constant supply of large amounts of oxygen in the blood) lead to encephalopathy, it is necessary to reveal ammonia-induced impairments in the energy metabolism and antioxidant defense system of erythrocytes and to explore a potential role of ammonia in reduced brain oxygenation. To identify the said missing link, the activities of antioxidant enzymes and concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), and H2O2 were measured in the erythrocytes of rats with HA that were injected with the noncompetitive NMDAR antagonist MK-801. We found that in rats with HA, ammonia was accumulated in erythrocytes (cells lacking ammonia removal enzymes), which made them more susceptible to the prooxidant environment created during oxidative stress. This effect was completely or partially inhibited by MK-801. The data obtained might help to identify the risk factors in cognitive disorders and facilitate prediction of unfavorable outcomes of hypoperfusion in patients with a blood elevated ammonia concentration.


Hepatic Encephalopathy , Receptors, N-Methyl-D-Aspartate , Humans , Rats , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Antioxidants , Ammonia/toxicity , Ammonia/metabolism , Dizocilpine Maleate/pharmacology , Hydrogen Peroxide/metabolism , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/metabolism , Erythrocytes/metabolism , Oxygen/metabolism
15.
Epilepsia ; 64(12): 3377-3388, 2023 Dec.
Article En | MEDLINE | ID: mdl-37734923

OBJECTIVE: N-methyl-d-aspartate (NMDA) receptors are expressed at synaptic sites, where they mediate fast excitatory neurotransmission. NMDA receptors are critical to brain development and cognitive function. Natural variants to the GRIN1 gene, which encodes the obligatory GluN1 subunit of the NMDA receptor, are associated with severe neurological disorders that include epilepsy, intellectual disability, and developmental delay. Here, we investigated the pathogenicity of three missense variants to the GRIN1 gene, p. Ile148Val (GluN1-3b[I481V]), p.Ala666Ser (GluN1-3b[A666S]), and p.Tyr668His (GluN1-3b[Y668H]). METHODS: Wild-type and variant-containing NMDA receptors were expressed in HEK293 cells and primary hippocampal neurons. Patch-clamp electrophysiology and pharmacology were used to profile the functional properties of the receptors. Receptor surface expression was evaluated using fluorescently tagged receptors and microscopy. RESULTS: Our data demonstrate that the GluN1(I481V) variant is inhibited by the open pore blockers ketamine and memantine with reduce potency but otherwise has little effect on receptor function. By contrast, the other two variants exhibit gain-of-function molecular phenotypes. Glycine sensitivity was enhanced in receptors containing the GluN1(A666S) variant and the potency of pore block by memantine and ketamine was reduced, whereas that for MK-801 was increased. The most pronounced functional deficits, however, were found in receptors containing the GluN1(Y668H) variant. GluN1(Y668H)/2A receptors showed impaired surface expression, were more sensitive to glycine and glutamate by an order of magnitude, and exhibited impaired block by extracellular magnesium ions, memantine, ketamine, and MK-801. These variant receptors were also activated by either glutamate or glycine alone. Single-receptor recordings revealed that this receptor variant opened to several conductance levels and activated more frequently than wild-type GluN1/2A receptors. SIGNIFICANCE: Our study reveals a critical functional locus of the receptor (GluN1[Y668]) that couples receptor gating to ion channel conductance, which when mutated may be associated with neurological disorder.


Ketamine , Neurodevelopmental Disorders , Humans , Memantine/pharmacology , Dizocilpine Maleate/pharmacology , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , HEK293 Cells , Glutamates , Neurodevelopmental Disorders/genetics , Glycine , Nerve Tissue Proteins/metabolism
16.
Psychopharmacology (Berl) ; 240(12): 2435-2457, 2023 Dec.
Article En | MEDLINE | ID: mdl-37725119

RATIONALE: MK-801 (dizocilpine) is a non-competitive NMDA receptor antagonist originally explored for anticonvulsant potential. Despite its original purpose, its amnestic properties led to the development of pivotal models of various cognitive impairments widely employed in research and greatly impacting scientific progress. MK-801 offers several advantages; however, it also presents drawbacks, including inducing dose-dependent hyperlocomotion or ambiguous effects on anxiety, which can impact the interpretation of behavioral research results. OBJECTIVES: The present review attempts to summarize and discuss the effects of MK-801 on different types of memory and cognitive functions in animal studies. RESULTS: A plethora of behavioral research suggests that MK-801 can detrimentally impact cognitive functions. The specific effect of this compound is influenced by variables including developmental stage, gender, species, strain, and, crucially, the administered dose. Notably, when considering the undesirable effects of MK-801, doses up to 0.1 mg/kg were found not to induce stereotypy or hyperlocomotion. CONCLUSION: Dizocilpine continues to be of significant importance in preclinical research, facilitating the exploration of various procognitive therapeutic agents. However, given its potential undesirable effects, it is imperative to meticulously determine the appropriate dosages and conduct supplementary evaluations for any undesirable outcomes, which could complicate the interpretation of the findings.


Dizocilpine Maleate , Receptors, N-Methyl-D-Aspartate , Animals , Dizocilpine Maleate/pharmacology , Stereotyped Behavior , Anticonvulsants , Cognition , Dose-Response Relationship, Drug
17.
Endocr Regul ; 57(1): 152-161, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-37561834

Objective. Modified levels of pro- (caspase3, Bax) and anti-apoptotic (Bcl-2) regulatory proteins have been detected in certain brain areas of schizophrenic patients indicating a possible dysregulation of apoptosis. In the present study, effects of antipsychotics, haloperidol (HAL) and olanzapine (OLA), on the gene expression of caspase3 (casp3), Bax and Bcl-2 were studied in vitro in mouse hippocampal mHippoE-2 cell line and in vivo in the hippocampus of MK-801 animal schizophrenia model with the aim to provide evidence that antipsychotics may affect the activity of apoptosis-related markers. Methods. mHippoE-2 cells were incubated with MK-801 (20 µM), HAL (10 µM), and OLA (10 µM) alone or combined, MK-801+HAL/OLA, for 24, 48, and 72 h. Male Sprague Dawley rats were injected with saline or MK-801 (0.5 mg/kg) for 6 days and since the 7th day, they were treated with vehicle (VEH), HAL (1 mg/kg) or OLA (2 mg/kg) for the next 7 days. The casp3, Bax and Bcl-2 gene expression in mHippoE-2 cells and rat hippocampus was measured by RT-PCR. Results. In mHippoE-2 cells, casp3 gene expression was increased by MK-801 and OLA treatments alone for 48 h, HAL treatment alone for 24 and 72 h, and co-treatment with MK-801+OLA for 24 and 72 h compared to controls. HAL and OLA suppressed the stimulatory effect of MK-801 on casp3 mRNA levels in cells after 48 h of incubation. Bax mRNA levels in mHippoE-2 cells were decreased after HAL treatment for 24 and 48 h, and also after co-treatment with MK-801+HAL for 72 h. In vivo, MK-801 decreased mRNA levels of both pro-apoptotic markers, casp3 and Bax, in hippocampus of VEH-treated rats and Bax mRNA levels in hippocampus of HAL-treated animals. OLA reversed the inhibitory effect of MK-801 on casp3 expression in the VEH-treated animals. Neither MK-801 nor antipsychotics induced changes in the gene expression of anti-apoptotic marker Bcl-2 in mHippoE-2 cells as well as hippocampus of rats. Conclusions. The results of the present study demonstrate that antipsychotics, HAL and OLA, may affect mRNA levels of pro-apoptotic markers in hippocampal cells in vitro, but not in vivo. The obtained data do not clearly support the assumed potentiating role of MK-801 in inducing apoptosis in specific brain areas and a possible protective role of antipsychotics against induction of apoptosis. The obtained data may contribute to a deeper insight into the neurodevelopmental changes connected with schizophrenia.


Antipsychotic Agents , Rats , Male , Mice , Animals , Antipsychotic Agents/pharmacology , Haloperidol/pharmacology , Olanzapine/pharmacology , Caspase 3/pharmacology , Dizocilpine Maleate/pharmacology , bcl-2-Associated X Protein/genetics , Benzodiazepines/pharmacology , Rats, Sprague-Dawley , Apoptosis , Hippocampus
18.
Cent Nerv Syst Agents Med Chem ; 23(2): 119-125, 2023.
Article En | MEDLINE | ID: mdl-37587828

BACKGROUND: NMDA receptors have a significant role in the development of opioid physical dependence. Evidence demonstrated that a drug of abuse enhances neuronal excitability in the Paraventricular Nucleus (PVT). The current research studied whether blocking NMDA receptors through the administration of MK801 in the PVT nucleus could affect the development of Morphine (Mor) dependence and hence the behavioral indices induced by morphine withdrawal in rats. METHODS: Male Wistar rats weighing 250-300 g were used. For induction of drug dependence, we injected Mor subcutaneously (s.c.) (6, 16, 26, 36, 46, 56, and 66 mg/kg, 2 ml/kg) at an interval of 24 hours for 7 days. Animals were divided into two groups in which the NMDA receptor antagonist, MK801 (20 mM in 0.1 ml), or its vehicle were applied into the PVT nucleus for 7 days before each Mor administration. On day 8, after injection of naloxone (Nal, 2.5 mg/kg, i.p.), withdrawal behaviors were checked for 25 min. RESULTS: The current results demonstrated that the blockade of the NMDA receptor in the PVT nucleus significantly increased withdrawal behaviors provoked by the application of Nal in morphinedependent (Mor-d) rats. CONCLUSION: We concluded that the NMDA receptor in the PVT nucleus changes the development of Mor dependence.


Morphine Dependence , Opioid-Related Disorders , Substance Withdrawal Syndrome , Rats , Male , Animals , Morphine/pharmacology , Morphine/therapeutic use , Naloxone/pharmacology , Naloxone/therapeutic use , Receptors, N-Methyl-D-Aspartate/therapeutic use , Narcotics/pharmacology , Narcotics/therapeutic use , Narcotic Antagonists/pharmacology , Narcotic Antagonists/therapeutic use , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Midline Thalamic Nuclei , Rats, Wistar , Substance Withdrawal Syndrome/drug therapy , Morphine Dependence/drug therapy
19.
Neuropharmacology ; 239: 109689, 2023 11 15.
Article En | MEDLINE | ID: mdl-37597609

Obsessive-compulsive disorder (OCD) is characterised by excessive intrusive thoughts that may cause an individual to engage in compulsive behaviours. Frontline pharmacological treatments (i.e., selective serotonin reuptake inhibitors (SSRIs)) leave approximately 40% of patients refractory to treatment. To investigate the possibility of novel pharmacological therapies for OCD, as well as the potential mechanisms underlying its pathology, we used the Sapap3 knockout (KO) mouse model of OCD, which exhibits increased anxiety and compulsive grooming behaviours. Firstly, we investigated whether administration of the NMDA receptor (NMDAR) antagonist ketamine (30 mg/kg), would reduce anxiety and grooming behaviour in Sapap3 KO mice. Anxiety-like behaviour was measured via time spent in the light component of the light-dark box test. Grooming behaviour was recorded and scored in freely moving mice. In line with previous works conducted in older animals (i.e. typically between 6 and 9 months of age), we confirmed here that Sapap3 KO mice exhibit an anxious, compulsive grooming, hypolocomotive and reduced body weight phenotype even at a younger age (i.e., 2-3 months of age). However, we found that acute administration of ketamine did not cause a reduction in anxiety or grooming behaviour. We then investigated in vivo glutamatergic function via the administration of a different NMDAR antagonist, MK-801 (0.25 mg/kg), prior to locomotion and prepulse inhibition assays. We found evidence of altered functional NMDAR activity, as well as sexually dimorphic prepulse inhibition, a measure of sensorimotor gating, in Sapap3 KO mice. These results are suggestive of in vivo glutamatergic dysfunction and their functional consequences, enabling future research to further investigate novel treatments for OCD.


Dizocilpine Maleate , Ketamine , Animals , Mice , Dizocilpine Maleate/pharmacology , Ketamine/pharmacology , Receptors, N-Methyl-D-Aspartate , Compulsive Behavior , Prepulse Inhibition , Nerve Tissue Proteins/genetics
20.
Psychopharmacology (Berl) ; 240(9): 2005-2012, 2023 Sep.
Article En | MEDLINE | ID: mdl-37580441

RATIONALE: Rodent vendors are often utilized interchangeably, assuming that the phenotype of a given strain remains standardized between colonies. Several studies, however, have found significant behavioral and physiological differences between Sprague Dawley (SD) rats from separate vendors. Prepulse inhibition of startle (PPI), a form of sensorimotor gating in which a low-intensity leading stimulus reduces the startle response to a subsequent stimulus, may also vary by vendor. Differences in PPI between rat strains are well known, but divergence between colonies within the SD strain lacks thorough examination. OBJECTIVES: We explored intrastrain variation in PPI by testing SD rats from two vendors: Envigo and Charles River (CR). METHODS: We selected drugs acting on four major neurotransmitter systems that have been repeatedly shown to modulate PPI: dopamine (apomorphine; 0.5, 1.5, 3.0 mg/kg), acetylcholine (scopolamine; 0.1, 0.5, 1.0 mg/kg), glutamate (dizocilpine; 0.5, 1.5, 2.5 mg/kg), and serotonin (2,5-Dimethoxy-4-iodoamphetamine, DOI; 0.25, 0.5, 1.0 mg/kg). We determined PPI and startle amplitude for each drug in male and female Envigo and CR SD rats. RESULTS: SD rats from Envigo showed dose-dependent decreases in PPI after apomorphine, scopolamine, or dizocilpine administration, without significant effects on startle amplitude. SD rats from CR were less sensitive to modulation of PPI and/or more sensitive to modulation of startle amplitude, across the three drugs. CONCLUSIONS: SD rats showed vendor differences in sensitivity to pharmacological modulation of PPI and startle. We encourage researchers to sample rats from separate vendors before experimentation to identify the most suited source of subjects for their specific endpoints.


Dopamine , Prepulse Inhibition , Rats , Male , Female , Animals , Dopamine/pharmacology , Rats, Sprague-Dawley , Apomorphine/pharmacology , Dopamine Agonists/pharmacology , Acetylcholine , Pharmaceutical Preparations , Glutamic Acid , Dizocilpine Maleate/pharmacology , Reflex, Startle , Acoustic Stimulation , Scopolamine Derivatives/pharmacology
...